

Keystroke Level Modeling as a
Cost-Justification Tool

By Deborah J. Mayhew, PhD

Keystroke level modeling (Card, Moran & Newell, 1983) is one of a variety of cognitive
modeling techniques that have been reported in the literature over the last two
decades. Cognitive modeling, simply put, involves identifying and counting all the
discrete human operations - physical (e.g., mouse click, keystroke), cognitive (e.g.,
read or speak a syllable of text, make a mental comparison) and perceptual (e.g. locate
something on screen) - that a user must execute in order to most efficiently accomplish
a specific task on a specific user interface design. System response time operators are
then added to the model where appropriate. Time values for each operator (available in
the literature for human operators) are then plugged into a task model to predict a total
task time. The total task times generated by such models predict the fastest time (on
average) that highly trained and experienced users will be able to perform a given task
on a given user interface with a given set of system response times, assuming they
perform the task with no errors.

Like formal usability testing, modeling is a method for assessing the expected usability
of a particular user interface design. Formal usability testing is an excellent technique to
use during product development when the main usability goal is ease of learning. This
is because it is relatively easy to find potential users who are untrained and
inexperienced with a proposed design to participate in your study, and testing with such
users allows you to discover what about your design is unintuitive and difficult to learn
for users who haven't had the benefit of training, user manuals and frequent practice
and experience. Public websites such as e-commerce sites tend to have casual and
infrequent users, and are an example of a type of software application in which ease of
learning for novices is a much more important usability goal than proficiency of well
trained and highly practiced experts. Thus, formal usability testing is an excellent
technique to use early in the development of such sites.

However, in many cases the key usability goal of a web-enabled application (e.g., a
traditional business application for use by internal users that just happens to be web-
enabled, as opposed to a public website) - as well as of many applications built on
other platforms - is not ease of learning for new or casual users, but ease of use - i.e.,
productivity - for well-trained, highly experienced, proficient and high frequency users.
This aspect of usability is much harder to measure by formal usability testing early in
the design process for a new application, because you never have well-trained, highly
experienced and proficient users of a system that nobody has used yet (precisely

Deborah J.
Mayhew &
Associates

88 Panhandle Road
Post Office Box 248
West Tisbury, MA 02575
PH: 508-693-7149
FX: 508-693-9726
Email: drdeb@vineyard.net
Website: http://djmassoc.com

mailto:drdeb@vineyard.net
http://djmassoc.com/

Keystroke Level Modeling as a Cost-Justification Tool Deborah J. Mayhew, PhD 2

because it is still in the early design stage.) It is very hard - perhaps impossible - to
accurately simulate peak proficiency usage when a design is only in the prototype stage
- let alone when it is only on paper.

Thus, cognitive modeling provides a useful and practical technique for assessing a
proposed user interface design against ease of use goals (i.e., goals for average task
time for trained, high frequency, expert users.) It can easily be applied long before
implementation or even prototyping, at a point in the development process at which
formal usability testing for ease of use is just not feasible.

A few scenarios come to mind in which cost justifying one specific, concrete user
interface design relative to another could be a very productive exercise. First, many
development projects are intended to replace older applications, rather than to
automate work that has not previously been automated. In this case, before building the
replacement application, it would be invaluable to be able to predict with some level of
confidence that a proposed application user interface design will actually result in
greater user productivity levels than the existing application, to the extent that the new
development effort will in fact in time pay off. Within this scenario, it is also true that if
modeling of the initial proposed design does not predict a level of improvement in
productivity relative to the existing applications that will in fact cost justify the
development and implementation of the new application, the models will also provide
insights into why the hoped for improvement is not predicted to be realized, which in
turn can drive redesign ideas for the new application. Modeling can thus be applied
iteratively to evolve the proposed design until it in fact does achieve predicted
improvements in productivity large enough to cost justify the development effort. All this
can potentially be accomplished before development begins in earnest.

Second, when an organization is comparison shopping in order to purchase a
commercial software package, it would be invaluable to be able to predict with
confidence which of the competing packages would support the highest level of user
productivity once users are trained and experienced, as this will likely result in the
greatest return on investment for the purchase. Thus modeling can be used to cost
justify the purchase of one competing package over others.

And third, during the design and development of a new application, inevitably
competing user interface design ideas arise. Modeling can be applied when user
interface design is still just on paper to predict which of any number of competing
design ideas will result in the greatest user productivity, thus cost justifying one of the
competitive design proposals relative to all others. Again, this can help insure a
particular desired return on investment for the overall development effort by helping to
optimize the design to achieve business goals for the development project.

This article provides a high level overview of a case study which illustrates the
adaptation and use of the keystroke level modeling technique to cost justify the
development of a new web-enabled application intended to replace a set of old
mainframe based applications. While the case study has been heavily disguised, it is

Keystroke Level Modeling as a Cost-Justification Tool Deborah J. Mayhew, PhD 3

based closely on an actual project, and the results reported here are in important
respects very real. A much more detailed version of this case appears in the book Cost-
Justifying Usability: An Update for the Internet Age (Bias & Mayhew, 2005.)

Case Study

The mail processing department of a credit card company was planning to replace a
collection of 14 disparate mainframe-based applications, all with different user
interfaces, that mail processing clerks ("clerks") currently used to process incoming
requests and payments from account holders. The replacement was to be a single
integrated web-enabled application with a consistent and improved user interface. The
business case for this replacement project was premised on an expected increase in
clerk productivity which over a period of time would pay for the cost of the development
effort and then continue to accrue cost savings for the company.

The new application was intended to support clerks that processed incoming mail from
account holders. These clerks performed a variety of tasks such as accepting and
processing:

* Monthly payments
* Requests for balance transfers from other credit cards
* Requests to add new credit cards to an account holder's account
* Requests to close out an account
* Requests to refuse a fraudulent charge

In all tasks, paper request forms and checks received from account holders by mail
were scanned into the system by other staff members, and the images of these forms
and checks appeared as tasks in a work queue on the workstations of the clerks. The
clerks would bring up the images for a given task on their screen, and then open up and
work in a variety of other applications to get the requests documented in the images
recorded in the appropriate databases.

The business manager overseeing the replacement development project worked out a
business case to justify the project cost. Based on knowledge of the current yearly
volume of transactions for each mail processing task (e.g., accept monthly payments,
add a new card, etc.) and on identified opportunities for increasing productivity in the
proposed web-enabled application, she set a goal for each task that would have to be
met for the overall cost justification of the new application to become a reality. These
goals were expressed as a required productivity gain for each task on the proposed
application relative to the existing applications. For some tasks, this goal was an 18%
gain, for some it was a 10% gain, and for others it was a 0% gain (that is, at least no
loss.) In other words, the goals were for trained, frequent and highly practiced mail
processing clerks to be able on average to perform specific tasks anywhere from 0 -
18% faster on the new web-enabled application than they could currently do on the
multiple mainframe based applications they were using. Unless these specific task

Keystroke Level Modeling as a Cost-Justification Tool Deborah J. Mayhew, PhD 4

goals were met, the cost of the overall development effort would not in the end be
justified, at least financially.

Having set these goals, the business manager next began to wonder if and how she
could be assured that these task productivity gain goals would in fact be achieved by
the new application before building and launching it, rather than waiting until after
launch and possibly finding out that the goals had not been met, and that significant
additional time and cost would be required to redesign and rebuild the new application
to meet goals, further eating into the return on investment. She turned to her internal
usability engineering staff, who were already stretched very thin supporting this and
various other internal development projects. Together the business manager and
usability engineering manager decided to look for an outside consultant to help them
assess whether or not the current proposed design of the new web-enabled application
would in fact result in an application that would meet the identified productivity goals.
This is where I came in.

We carried out the project very collaboratively, in the following steps:

1. Model Tasks
2. Run Existing Applications Productivity Test and Use Results to Refine Modeling
Technique
3. Compare Modeling Results to Goals
4. Address Unmet Goals
5. Run New Application Productivity Test

Model Tasks

For each of eight user tasks identified as high priority by the business manager, we
modeled the task both on the existing and on the proposed applications. The steps in
the modeling process were as follows:

1. Identify Task Versions. Business management decided on a particular version of
each task to model. This was important because the modeling technique captures an
exact sequence of user interactions and predicts an overall task time for that specific
sequence. General tasks have many possible variations. For example, in the Balance
Transfer task, sometimes account holders want to transfer balances from a single other
credit card, while other times they want to transfer balances from multiple other credit
cards. Similarly, in the address change task, sometimes an account holder has multiple
addresses (e.g., primary home, vacation home and business) and sometimes they only
have one. Sometimes they want to change just one while sometimes they want to
change more than one. However, a given model can only capture one of each of these
potential variations at each point where they occur. Thus, business management first
had to decide within each general task, exactly which very specific version of it they
wanted to model.

Keystroke Level Modeling as a Cost-Justification Tool Deborah J. Mayhew, PhD 5

2. Generate Task Scenarios. Since I was working remotely and did not have access to
either the existing applications or prototypes of the proposed application, business staff
then generated "task scenarios" which documented for me how the selected version of
a task would play out on both applications. We worked out a documentation format that
consisted of a sequence of screen shots pasted into Microsoft PowerPoint. Each slide
presented a screen shot in the sequence, with notes attached to it describing generally
how the user would interact with that screen at that point in the task.

3. Prepare Draft Models. Based on the task scenarios, I then generated two draft
models for a given task - one on the existing applications, and one on the proposed
application.

4. Conduct Model Walkthroughs. The task scenarios were rarely complete and
detailed enough to allow me to generate complete and accurate models, but they were
more than adequate to support the generation of draft models. After drafting models, I
would get on the phone with the business experts who had generated the task
scenarios for the tasks, and we would walk through my draft models together and they
would clarify and correct as necessary.

I created the models in Microsoft Excel. Each task was captured in a separate Excel
file. There were three worksheets in each spreadsheet file, one capturing all operator
time values to be plugged into the models, one documenting the model of the task on
the existing applications, and one documenting the model of the task on the proposed
application.

The models included the set of operators presented in Figure 1. The time values per
operator given in Figure 1 represent an initial set used in the modeling, which later was
changed (see below.)

Keystroke Level Modeling as a Cost-Justification Tool Deborah J. Mayhew, PhD 6

Run Existing Applications Productivity Test and Use Results to Refine Modeling
Technique

Next - and actually somewhat in parallel with our modeling effort - we carried out a
productivity (ease of use) test on the existing applications. Our purpose here was two-
fold: eventually we planned to compare actual existing applications task times to actual
proposed application task times as a final validation of the proposed application, so the
data collected now on the existing system would be used in that comparison down the
line.

However, even though it was to be as much as a year later before we could run a
productivity test on the implemented proposed application, we ran the existing
applications productivity test earlier rather than later because we planned to use the
data from it to refine and validate our modeling technique, in order to increase our
confidence in our comparison of models of tasks on the two applications. That is, if we
at least knew that our models of the existing applications were relatively accurate, we
would have more confidence that our models of the proposed application - and thus the
predicted productivity gains (or losses) of the proposed relative to the existing
applications - were also relatively accurate.

Once we had actual average task times for each task on the existing applications, we
compared these to the modeled times and computed error rates for the models of each
task. The error rate for a task was computed as the model time minus the actual time,
divided by the actual time. Initially some - although not all - of the error rates seemed a

Keystroke Level Modeling as a Cost-Justification Tool Deborah J. Mayhew, PhD 7

little high - over the 20% typically reported in the literature. To address these high error
rates, a variety of "what-if" scenarios were played out with the models, varying the time
values assigned to the operators "K" (typing speed), "M" (mental operations) and
"Scan" (time to scan a page of text.) The time values for these three operators that
yielded an optimized set of existing applications model error rates across all eight tasks
were "K" set to 0.12 seconds (which equals 90 words per minute - it had originally been
set to 0.20 seconds, or 55 words per minute), "M" set to zero seconds (it had originally
been set to 1.35 seconds), and "Scan" set 1.0 second (it had originally been set to 5.0
seconds.)

Another way of putting this is that if we assumed that users were faster typists and
faster scanners than assumed in the original models, and if we assumed that in effect
these users could "parallel process" any very simple mental operations with the
physical ones (thus making it unnecessary to calculate in the time of any simple mental
operators), then the existing applications models predicted actual times much more
accurately, that is, with lower error rates, across all 8 tasks.

Thus in the end, we used the time values for operators mentioned above, rather than
the original time values given in Figure 1, to generate our predictions for task times on
both the existing and the proposed applications.

It is important to note that in refining our modeling strategy we only altered the time
values of those operators not firmly established in the literature. The "K" operator,
which represents typing speed, by definition, will vary across user populations. The
"Scan" operator is one we made up, not reported in the literature at all. And for the "M"
operator, we did not change the well established time value of 1.35 seconds - rather we
simply did not include the operator in our models at all in the end, under the assumption
that these very experienced users would always be able to "parallel" process these
simple mental operators with the physical ones. For all other operators we retained time
values well established in the literature.

The spreadsheet in Figure 2 shows, for each of the 8 tasks, the modeled total task time
on the existing applications (row 4), the actual total task time on the existing
applications (row 5), the number of test users ("N") and trials ("(t)") in the productivity
test on which the actual total task time was based (8 users were run with three trials
each, but data from some trials were thrown out because users did not follow the task
interaction sequence that was modeled) (row 6), and the error rate of the existing
applications model (calculated as the model time minus the actual time, divided by
actual time) (row 7.) Here it can be seen that across the 8 tasks, the error rates of the
final models of the existing applications are all below 20%, and some are quite low
indeed

Keystroke Level Modeling as a Cost-Justification Tool Deborah J. Mayhew, PhD 8

Compare Modeling Results to Goals

Having refined and validated our modeling technique by comparing modeled times to
actual times on the existing applications, we next compared the final modeled
productivity gains (or losses) of the proposed application relative to the existing
applications for each task, to the productivity gain goals for each task.

The spreadsheet in Figure 2 presents the modeled total task times for each of the 8
tasks on both the existing (row 4) and proposed (row 9) applications, and the percent
difference between them (proposed modeled minus existing modeled, divided by
existing modeled - row 15.) These percent differences between models were compared
to the goal percent differences for each task, also presented in the spreadsheet (row
14.) The modeled percent differences are presented as red (and positive) numbers
when the proposed application was predicted to be slower (that is, take more time) than
the existing applications, green (and negative) when the proposed application was
predicted to be faster (that is, take less time) than the existing applications, and yellow
(and positive) when the proposed application was predicted to be slower than the
existing applications but not by much.

An inspection of these numbers in the spreadsheet shows that on tasks 2, 3, 6, 7 and 8,
the models predicted that the productivity goals for the proposed application, given the

Keystroke Level Modeling as a Cost-Justification Tool Deborah J. Mayhew, PhD 9

user interface that was modeled, would be met and in fact exceeded, in some cases
dramatically. This of course was good news to the business manager. On the other
hand, task 1 was predicted to fail rather dramatically to meet the productivity goal
assigned to it, and tasks 4 and 5 were also predicted to fail to meet goals, although only
minimally. We next focused our attention on those tasks that were predicted to fail to
meet productivity goals.

Address Unmet Goals

For tasks in which the models predicted that productivity gain goals would not be met,
we analyzed the models in detail to determine why and to suggest redesign directions.

The one task that stood out dramatically in the spreadsheet in Figure 2 was task 1, the
Accept Monthly Payment task. The goal for this task was that users would be 10%
more productive on the proposed application relative to the existing applications, but
the models predicted that given the proposed user interface design for this task, in fact
users would be 13% less productive.

We analyzed the models for this task to determine exactly what part of the proposed
user interface was accountable for this predicted productivity loss. For example, we
found that 4.92 seconds of the difference between the two models (which totaled 7.28
seconds) occurred because on a single page, more operators were required on the
proposed application to place the cursor in fields, tab between fields and execute a
Bank Number search. Other differences, similarly analyzed and documented,
accounted for the remaining difference of 2.36 seconds, and these were documented in
a similarly detailed fashion. The designers then revisited the design of the Accept
Monthly Payment task on the proposed application and looked for ways to eliminate the
identified additional operators.

This sort of analysis was also carried out for tasks 4 and 5, which were also predicted
by the models to fail to meet productivity goals, and design changes were made to
these task user interfaces as well.

In theory, we could have then remodeled these tasks on the redesigned proposed
application to predict if the redesigns would in fact result in achieving the increased
productivity goals for these tasks. Instead, however, the business manager decided to
simply go ahead and make changes driven in this way by the model analyses, and then
wait until it was possible to perform a productivity test on the proposed application beta
version (which reflected the design changes) to determine whether in fact the goals had
been met by the redesigns.

Thus, the proposed user interface for 3 of the 8 tasks (tasks 1, 4 and 5 in Figure 9)
were redesigned in response to the modeling results. It is important to note that they
were not redesigned in ways that introduced inconsistencies into the overall conceptual
model and page design conventions of the proposed application as a whole. Care was

Keystroke Level Modeling as a Cost-Justification Tool Deborah J. Mayhew, PhD 10

taken to eliminate operators and streamline interactions without violating the overall
user interface architecture of the proposed application.

Run Proposed Application Productivity Test

Some months later, after redesign and implementation of a beta version of the
proposed application, we ran a productivity test to determine actual productivity on the
proposed application, as a final validation of the productivity gain goals, as well as of
the model predictions.

We had to conduct this productivity test slightly differently than the one on the existing
applications, since there were in fact no highly trained and experienced users of the
proposed application yet - we ran the test as soon as the beta version was stabilized,
as always hoping to get information on productivity gains (or losses) sooner rather than
later, when changes would be cheaper and easier to make. Thus, we had to try to
simulate expert usage. We did this by providing test users with training and an
opportunity to practice prior to running our test. Other than that, the testing was run just
as for the productivity test of the existing applications. We were not entirely sure we
would be able to get users up to potential expert peak performance in a brief training
session, but in fact it appeared that we were. This was good both from the point of view
of simulating potential productivity, and as a sign of how easy to learn the proposed
application would be.

Figure 2 shows the data from the productivity test on the proposed application. The last
row (row 16) in the spreadsheet in Figure 2 shows the percent difference between the
actual average total task times on each task on the existing and proposed applications.
Note that these are real performance differences - no modeled results are involved
here. Note also that for all 8 tasks, the proposed application is showing a productivity
gain - in spite of the fact that the training and practice sessions were relatively brief.

Remember that task 1, address change, had showed a productivity loss of 13% when
modeled (row 15, column B in Figure 2.) Also remember that this productivity loss was
analyzed in detail by comparing models, and that the user interface to the proposed
application was then redesigned to address this productivity loss. In the productivity test
on the redesigned proposed application, it was revealed to show a 23% productivity
gain relative to the existing applications (row 16, column B) - surpassing the business
goal of a 10% gain (row 14, column B.) Clearly the redesign succeeded in solving the
problem the modeling had revealed.

Also note that the error rate of the model for the proposed application relative to the
actual productivity data on this task (row 12, column B) is quite high (38.86%.) This in
part reflects the fact that the user interface modeled and the user interface tested for
the proposed application were not the same - the one tested had in fact been
redesigned in response to the modeling results. We did not bother, as stated earlier, to
go back and remodel after redesigning (as we could have if it was still going to be a

Keystroke Level Modeling as a Cost-Justification Tool Deborah J. Mayhew, PhD 11

long time before a beta version was available), we simply went next to getting actual
productivity data.

Tasks 4 and 5 were the other two tasks - like task 1 - that were revealed by the
modeling to fall short of business goals, and that were redesigned in response to the
analyses the models facilitated. It can be seen in Figure 2 (row 16, columns E and F)
that again for these two tasks, while the model results showed a productivity loss for the
proposed application as modeled, the productivity tests showed a significant
productivity gain for the proposed application as redesigned in response to modeling
results and analyses.

Thus, the productivity test on the proposed application in its beta form - even though
test users were minimally trained and experienced and the beta application was not
100% stable - validated that both the original proposed application design on a number
of tasks, and a redesign of other tasks, would succeed at meeting the business goals
that in turn would cost justify the whole development effort.

It might also be noted that on tasks whose design did not change from the design
modeled (i.e., tasks 2, 3, 6, 7 and 8), error rates for the proposed application models
are reasonable, and modeled percent differences are fairly consistent with actual
percent differences. That is, the refined modeling technique in the end seemed to do a
pretty good job predicting actual productivity gains.

Conclusions

Modeling proved to be a valid and very useful cost justification technique on the project
reported in the case study above. It allowed the business manager to predict fairly
accurately - long before the proposed application was developed and launched -
whether or not productivity gains required to cost justify the new development effort
would in fact be achieved. In addition, it enabled an analysis of those tasks predicted to
fail to meet business goals, which in turn drove redesign to achieve those goals - again,
long before launch, when it was much cheaper and easier to make design changes. In
the end, both the credit card company and I felt that a valuable tool had been refined
and validated that could be used in a similar way in the future within this organization to
minimize risk and insure ROI of investments in software development projects.

Bibliography

Atwood, M.E., Gray, W.D., and John, B.E. (1996). Project Ernestine: Analytic and
Empirical Methods Applied to a Real-World CHI Problem. In Rudisill, M., Lewis, C.,
Polson, P.B. and McKay, T.D. (Eds.). Human-Computer Interface Design (pp. 101-121).
San Francisco, CA: Morgan Kaufmann Publishers.

Bias, R. G and Mayhew, D. J., Eds. (1994). Cost Justifying Usability. Boston, MA:
Academic Press.

Keystroke Level Modeling as a Cost-Justification Tool Deborah J. Mayhew, PhD 12

Bias, R. G and Mayhew, D. J., Eds. (2005). Cost Justifying Usability (2nd Edition). San
Francisco, CA: Morgan Kaufmann Publishers..

Card, S.K., Moran, T.P. and Newell, A. (1983). The Psychology of Human-Computer
Interaction. Hillsdale, NJ: Lawrence Erlbaum Associates, Publishers.

John, B.E. and Kieras, D.E. (1996). Using GOMS for User Interface Design and
Evaluation: Which Technique? In ACM Transactions on Computer-Human Interaction,
3, 287-319.

John, B.E. (1990). Extensions of GOMS Analysis to Expert Performance Requiring
Perceptions of Dynamic Visual and Auditory Information. In CHI '90 Conference
Proceedings, 107-115.

